PV201e: Conversions & Formulas (Rev 2.0)

These are some of the conversions and formulas that are explained in our PV201e course and in the textbook “Photovoltaic Systems” by James P. Dunlop

Conversions

1 Meter = 3.28 Feet
1 Horsepower = 746 Watts
Solar Constant = 1366 W/m²
1 Peak Sun-Hour = 1kWh/m² = 3.6 MegaJoules/m²

Temperature conversion:

°F = (9/5 x °C) + 32
°C = (°F - 32) x 5/9

where
°F = temperature in Fahrenheit
°C = temperature in Celsius

Formulas

Electricity Basics: voltage, current, resistance, power

Ohm’s Law:

\[V = I \times R \]
\[I = \frac{V}{R} \]
\[R = \frac{V}{I} \]

where

\(I \) = Current, the flow of electricity (in Amperes (A))
\(V \) (also written \(E \)) = Voltage, the potential or pressure to cause a flow of electricity (in Volts (V))
\(R \) = Resistance, resists the flow of electricity (larger diameter wire = less resistance) (in Ohms (Ω))

Maximum Power of Solar Module:

\(P_{mp} = V_{mp} \times I_{mp} \)

where

\(P_{mp} \) = maximum power (in W)
\(V_{mp} \) = maximum power voltage (in V)
\(I_{mp} \) = maximum power current (in A)
The Solar Resource & Site Assessment

Solar Irradiation:

\[H = E \times t \]

where

- \(H \) = solar irradiation (in Wh/m\(^2\))
- \(E \) = average solar irradiance (in W/m\(^2\))
- \(T \) = time (in hr)

Solar Irradiance Response: The relationships between irradiance, current, and power can be expressed by the following ratios:

\[\frac{E_2}{E_1} = \frac{I_2}{I_1} = \frac{P_2}{P_1} \]

where

- \(E_2 \) = solar irradiance 2 (in W/m\(^2\))
- \(E_1 \) = solar irradiance 1 (in W/m\(^2\))
- \(I_2 \) = current at irradiance 2 (in A)
- \(I_1 \) = current at irradiance 1 (in A)
- \(P_2 \) = power at irradiance 2 (in W)
- \(P_1 \) = power at irradiance 1 (in W)

This relationship can be used to estimate how changes in irradiance affect short-circuit current, maximum power current, or maximum power changes:

\[I_{sc2} = I_{sc1} \times \left(\frac{E_2}{E_1} \right) \]
\[I_{mp2} = I_{mp1} \times \left(\frac{E_2}{E_1} \right) \]
\[P_{mp2} = P_{mp1} \times \left(\frac{E_2}{E_1} \right) \]

Array Area Estimate:

\[A = \frac{P_{mp}}{(1 \text{ kW} / \text{m}^2 \times \eta_m)} \]

where

- \(A \) = estimated required array area (in m\(^2\))
- \(P_{mp} \) = desired peak array power (in kW DC)
- \(\eta_m \) = module efficiency
Roof Slope to Tilt Angle
Example: 4:12 rise to run roof slope
Arctan of 4/12 = 18.4 degrees
Arctan is also shown on some calculators as tan -1

Trigonometry
Sin β° = side opposite/hypotenuse (beta)
Cos ψ° = adjacent side/hypotenuse (sigh)
Tan α° = side opposite/side adjacent (alpha)

In terms of shade analysis:
\[d_{\text{shadow}} = \text{height} / \tan \alpha° \]
\[\tan \alpha° = \text{height} / d_{\text{shadow}} \]
Height = \(\tan \alpha° / d_{\text{shadow}} \)

Where height = the top of the modules in one row to the bottom of the modules in the next row to the north;
Where the angle α° (theta) is the sun’s elevation angle also called the sun’s altitude angle

Formula to account for the azimuth correction angle:
\[d_{\text{min}} = d_{\text{shadow}} \times \cos \psi° \]

Where the angle \(\psi° \) (sigh) is the azimuth correction angle calculated from due south which is 180 degrees or is zero degrees depending on the type of sun path diagram;
Solar Cells, Modules, and Arrays

Efficiency of Solar Module:
\[\eta = \frac{P_{mp}}{(E \times A)} \]

where
- \(\eta \) = efficiency
- \(P_{mp} \) = maximum power (in W)
- \(E \) = solar irradiance (in W/m²)
- \(A \) = area (in m²)

Resistance Required at Maximum Power Point:
\[R_{mp} = \frac{V_{mp}}{I_{mp}} \]

where
- \(R_{mp} \) = resistance at maximum power point (in Ω)
- \(V_{mp} \) = maximum power voltage (in V)
- \(I_{mp} \) = maximum power current (in A)

Cell Temperature Estimate:
\[T_{cell} = T_{amb} + (C_{T-rise} \times E) \]

where
- \(T_{cell} \) = cell temperature (in °C)
- \(T_{amb} \) = ambient temperature (in °C)
- \(C_{T-rise} \) = temperature-rise coefficient (in °C/kW/m²)
- \(E \) = solar irradiance (in kW/m²)

Module or Array Coefficients:

For Voltage:
\[\frac{C_{V} = C_{V-cell} \times n_{s}}{ } \]

where
- \(C_{V} \) = module or array absolute temperature coefficient for voltage (in V/°C)
- \(C_{V-cell} \) = cell absolute temperature coefficient for voltage (in V/°C/cell)
- \(n_{s} \) = number of series-connected cells
For Current: \(C_i = C_{I\text{-cell}} \times n_P \times A \)

where
- \(C_i \) = module or array absolute temperature coefficient for current (in A/°C)
- \(C_{I\text{-cell}} \) = cell absolute temperature coefficient for current (in A/°C/cm²)
- \(n_P \) = number of parallel-connected cell strings
- \(A \) = individual cell area (in cm²)

Temperature Coefficients:

\[
C_V = V_{\text{ref}} \times C_{\%V} \\
C_i = I_{\text{ref}} \times C_{\%I} \\
C_P = P_{\text{ref}} \times C_{\%P}
\]

where
- \(C_V \) = absolute temperature coefficient for voltage (in V/°C)
- \(V_{\text{ref}} \) = reference (or rated) voltage (in V)
- \(C_{\%V} \) = relative temperature coefficient for voltage (in V/°C)
- \(C_i \) = absolute temperature coefficient for current (in A/°C)
- \(I_{\text{ref}} \) = reference (or rated) current (in A)
- \(C_{\%I} \) = relative temperature coefficient for current (in I/°C)
- \(C_P \) = absolute temperature coefficient for power (in W/°C)
- \(P_{\text{ref}} \) = reference (or rated) power (in W)
- \(C_{\%P} \) = relative temperature coefficient for power (in P/°C)

Voltage and Power Translations:

\[
V_{\text{trans}} = V_{\text{ref}} + ([T_{\text{cell}} - T_{\text{ref}}] \times C_V) \\
P_{\text{trans}} = P_{\text{ref}} + ([T_{\text{cell}} - T_{\text{ref}}] \times C_P)
\]

Where,
- \(V_{\text{trans}} \) = translated voltage at cell temperature (in V)
- \(V_{\text{ref}} \) = reference (or rated) voltage corresponding to \(T_{\text{ref}} \) (in V)
- \(T_{\text{cell}} \) = cell temperature (in °C)
- \(T_{\text{ref}} \) = reference (or rated) temperature (in °C)
- \(C_V \) = absolute temperature coefficient of voltage (in V/°C)
- \(P_{\text{trans}} \) = translated power at cell temperature (in W)
- \(P_{\text{ref}} \) = reference (or rated) power corresponding to \(T_{\text{ref}} \) (in W)
- \(C_P \) = absolute temperature coefficient of power (in W/°C)
Performance Analysis

Annual PV System Performance (approximate) in annual kWhs:
(average peak sun hours) x (system de-rating factor) x (array total Watts dc-STC) x 365 x Acorr

where

Acorr = azimuth correction from due south
Therefore, Acorr = 1.0 if azimuth of PV array is due south
Charge Controllers

Voltage Regulation Hysteresis:
VRH = VR - ARV
where
VR = Voltage Regulation Setpoint (in V)
ARV = Array Reconnect Voltage Setpoint (in V)

Low-Voltage Disconnect Hysteresis:
LVDH = LVD - LRV
where
LVD = Low-Voltage Disconnect Setpoint (in V)
LRV = Load Reconnect Voltage Setpoint (in V)

Setpoint Voltage at Battery Temperatures other than 25°C:
V_{comp} = V_{set} - (C_{Vcell} \times [25 - T_{bat}] \times n_s)
where
V_{comp} = temperature-compensated setpoint voltage (in V)
V_{set} = nominal setpoint voltage at 25°C (in V)
C_{Vcell} = temperature compensation coefficient (in V/°C/cell)
T_{bat} = battery temperature (in °C)
n_s = number of battery cells in series
Inverters

Energy

\[E = P_{\text{avg}} \times t \]

where
\(E \) = energy (Wh)
\(P_{\text{avg}} \) = average power (W)
\(t \) = time (hrs)

Ohm’s Law

\[V = I \times R \]

\[I = \frac{V}{R} \]

\[R = \frac{V}{I} \]

where
\(V \) = voltage (V)
\(I \) = current (A)
\(R \) = resistance (Ω)

Power in DC Circuits

\[P = V \times I \]

\[P = I^2 \times R \]

\[P = \frac{V^2}{R} \]

where
\(P \) = power (W)
\(V \) = voltage (V)
\(I \) = current (A)
\(R \) = resistance (Ω)
Real Power in AC Circuits

\[P = V \times I \times \cos \theta \]
\[P = V \times I \times PF \]

where
\(P \) = power (W)
\(V \) = voltage (V)
\(I \) = current (A)
\(\theta \) = phase angle (deg)
\(\cos \theta \) = power factor (0-1)

In 3-phase circuits:
\[P = V \times I \times \cos \theta \times \sqrt{3} \]

Inverter Efficiency

\[\eta_{inv} = \frac{P_{AC}}{P_{DC}} = \frac{5700}{6000} = 0.95 = 95\% \]

where
\(\eta_{inv} \) = inverter efficiency
\(P_{AC} \) = AC power output (W)
\(P_{DC} \) = DC power input (W)

Transformer Turns Ratio

\[\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{I_2}{I_1} \]

where
\(N_1 \) and \(N_2 \) = number of turns in primary and secondary windings
\(V_1 \) and \(V_2 \) = voltage in primary and secondary windings
\(I_1 \) and \(I_2 \) = voltage in primary and secondary windings
System Sizing

Weighted Average Operating Time:

$$t_{\text{op}} = \frac{[(E_1 \times t_1) + (E_2 \times t_2) + \ldots + (E_n \times t_n)]}{(E_1 + E_2 + \ldots + E_n)}$$

where
- \(t_{\text{op}}\) = weighted average operating time (in hr/day)
- \(E_1\) = DL energy required for load 1 (in Wh/day)
- \(t_1\) = operating time for load 1 (in hr/day)
- \(E_2\) = DL energy required for load 2 (in Wh/day)
- \(t_2\) = operating time for load 2 (in hr/day)
- \(E_n\) = DL energy required for nth load (in Wh/day)
- \(t_n\) = operating time for nth load (in hr/day)

Required Daily System DC Electrical Energy

$$E_{\text{SDC}} = (E_{\text{AC}}/\eta_{\text{inv}}) + E_{\text{DC}}$$

where
- \(E_{\text{SDC}}\) = required daily system DC electrical energy (in Wh/day)
- \(E_{\text{AC}}\) = AC energy consumed by loads (in Whr/day)
- \(\eta_{\text{inv}}\) = inverter efficiency
- \(E_{\text{DC}}\) = DC energy consumed by loads (in Whr/day)

Required Battery-Bank Output

$$B_{\text{out}} = \frac{(E_{\text{crit}} \times t_a)}{V_{\text{SDC}}}$$

where
- \(B_{\text{out}}\) = required battery-bank output (in Ah)
- \(E_{\text{crit}}\) = average daily electrical-energy consumption during critical design month (in Wh/day)
- \(t_a\) = autonomy (in days)
- \(V_{\text{SDC}}\) = nominal DC-system voltage (in V)

Average Discharge Rate

$$R_d = \frac{(t_{\text{op}} \times t_a)}{\text{DOD}_a}$$

where
- \(R_d\) = average discharge rate (in hr)
- \(t_{\text{op}}\) = weighted average operating time (in hr/day)
- \(t_a\) = autonomy (in days)
- \(\text{DOD}_a\) = allowable depth of discharge
Total Required Battery-Bank Rated Capacity

\[B_{\text{rated}} = \frac{B_{\text{out}}}{(DOD_a \times C_{T,rd})} \]

where

- \(B_{\text{rated}} \) = battery-bank rated capacity (in Ah)
- \(B_{\text{out}} \) = battery-bank required output (in Ah)
- \(DOD_a \) = allowable depth of discharge
- \(C_{T,rd} \) = temperature and discharge-rate derating factor

Average Battery-Bank Daily Depth of Discharge

\[DOD_{\text{avg}} = \frac{(LF \times E_{\text{day}})}{(B_{\text{actual}} \times V_{SDC})} \]

Where

- \(DOD_{\text{avg}} \) = average battery-bank daily depth of discharge
- \(LF \) = estimated load fraction
- \(E_{\text{day}} \) = average daily electrical-energy consumption (in Wh)
- \(B_{\text{actual}} \) = actual total rated battery-bank capacity (in Ah)
- \(V_{SDC} \) = DC-system voltage (in V)

Required Array Maximum-Power Current

\[I_{\text{array}} = \frac{E_{\text{crit}}}{(\eta_{\text{batt}} \times V_{SDC} \times t_{PSH})} \]

where

- \(I_{\text{array}} \) = required array maximum-power current (in A)
- \(E_{\text{crit}} \) = daily electrical-energy consumption during critical design month (in Wh/day)
- \(\eta_{\text{batt}} \) = battery-system charging efficiency
- \(V_{SDC} \) = nominal DC-system voltage (in V)
- \(t_{PSH} \) = peak sun hours for critical design month (in hr/day)

Rated Array Maximum-Power Current

\[I_{\text{rated}} = \frac{I_{\text{array}}}{C_s} \]

where

- \(I_{\text{rated}} \) = rated array maximum-power current (in A)
- \(I_{\text{array}} \) = required array maximum-power current (in A)
- \(C_s \) = soiling derating factor
Rated Array Maximum-Power Voltage

\[V_{\text{rated}} = 1.2 \times \left(V_{\text{SDC}} - \left(V_{\text{SDC}} \times C\%_V \times (T_{\text{max}} - T_{\text{ref}}) \right) \right) \]

Where

\(V_{\text{rated}} \) = rated array maximum-power voltage (in V)

\(V_{\text{SDC}} \) = nominal DC-system voltage (in V)

\(C\%_V \) = temperature coefficient for voltage month (in \(^{\circ}\text{C}\))

\(T_{\text{max}} \) = maximum expected module temperature (in \(^{\circ}\text{C}\))

\(T_{\text{ref}} \) = reference or rating temperature (in \(^{\circ}\text{C}\))

INTERACTIVE PV SYSTEM PERFORMANCE WORKSHEET

<table>
<thead>
<tr>
<th>Estimating and Verifying System AC Energy Production</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV Array DC Power Rating at STC - 1000 W/m(^2), 25 (^{\circ}\text{C}) (kW)</td>
<td></td>
</tr>
<tr>
<td>Derating Factors</td>
<td></td>
</tr>
<tr>
<td>Nameplate Ratings</td>
<td>0.95</td>
</tr>
<tr>
<td>Inverter and Transformer</td>
<td>0.95</td>
</tr>
<tr>
<td>Module Mismatch</td>
<td>0.98</td>
</tr>
<tr>
<td>DC Wiring</td>
<td>0.98</td>
</tr>
<tr>
<td>AC Wiring</td>
<td>0.99</td>
</tr>
<tr>
<td>Soiling</td>
<td>1.00</td>
</tr>
<tr>
<td>Shading</td>
<td>0.85</td>
</tr>
<tr>
<td>Sun Tracking</td>
<td>1.00</td>
</tr>
<tr>
<td>Age</td>
<td>1.00</td>
</tr>
<tr>
<td>Combined Derating Factors</td>
<td>0.73</td>
</tr>
<tr>
<td>Estimated System AC Power Output at STC - 1000 W/m(^2), 25 (^{\circ}\text{C}) (kW)</td>
<td>7.3</td>
</tr>
<tr>
<td>Temperature Adjustments</td>
<td></td>
</tr>
<tr>
<td>Array Power-Temperature Coefficient (%/(^{\circ}\text{C}))</td>
<td>-0.5</td>
</tr>
<tr>
<td>Average Array Operating Temperature ((^{\circ}\text{C}))</td>
<td>45</td>
</tr>
<tr>
<td>Estimated System AC Power Output at 1000 W/m(^2) and Average Operating Temperature (kW)</td>
<td>6.6</td>
</tr>
<tr>
<td>Solar Radiation Received</td>
<td></td>
</tr>
<tr>
<td>Solar Irradiation in Plane of Array (kWh/m(^2)/day)</td>
<td>5</td>
</tr>
<tr>
<td>Estimated System AC Energy Output at Average Operating Temperature (kWh/day)</td>
<td>29.5</td>
</tr>
</tbody>
</table>
Electrical Integration

Maximum PV System Voltage

\[V_{\text{max}} = V_{oc} \times n_m \times C_T \]

where

\(V_{\text{max}} \) = maximum system voltage (V)
\(V_{oc} \) = module rated open-circuit voltage at 25°C (V)
\(n_m \) = number of series-connected modules
\(C_T \) = low-temperature correction factor

Maximum Inverter Input Current

For stand-alone inverters operating from batteries, the maximum inverter input current must be evaluated at the lowest operating voltage when the inverter is producing rated power. \(P_{AC} \) is the rated inverter maximum continuous AC power output (in W).

\[I_{\text{max}} = \frac{P_{AC}}{V_{\text{min}} \times \eta_{\text{inv}}} \]

where

\(I_{\text{max}} \) = maximum inverter input current (A)
\(P_{AC} \) = rated inverter maximum AC power output (W)
\(V_{\text{min}} \) = minimum inverter operating voltage (V)
\(\eta_{\text{inv}} \) = inverter efficiency

Conductor Nominal Ampacity

\[I_{\text{nom}} = I_{\text{max}} / (C_{\text{temp}} \times C_{\text{conduit}}) \]

where

\(I_{\text{nom}} \) = conductor nominal ampacity (in A)
\(I_{\text{max}} \) = maximum circuit current (in A)
\(C_{\text{temp}} \) = correction factor for temperature
\(C_{\text{conduit}} \) = correction factor for number of current-carrying conductors in a conduit or cable
Voltage Drop

\[V_{drop} = I_{op} \times R_C \times L \]

where

- \(V_{drop} \) = voltage drop (V)
- \(I_{op} \) = operating current (A)
- \(R_C \) = conductor resistance per unit length (\(\Omega/\text{kft.} \))
- \(L \) = total conductor round-trip length (kft)

Economic Analysis

Time Value of Money

\[PV = \frac{FV}{(1+r)^t} \]

Where:

- \(PV \) = present value
- \(FV \) = future value
- \(r \) = discount rate
- \(t \) = time period

Life-Cycle Cost Analysis

\[LCC = I + M_{PV} + E_{PV} + R_{PV} - S_{PV} \]

where

- \(LCC \) = life-cycle cost ($)
- \(I \) = initial cost ($)
- \(M_{PV} \) = present value of maintenance costs ($)
- \(E_{PV} \) = present value of energy costs ($)
- \(R_{PV} \) = present value of repair and replacements ($)
- \(S_{PV} \) = present value of salvage value ($)